Case From The Newly Released Tinyml Cookbook

About the project

Check out how to repeat a TinyML experiment on building a weather station from the new “TinyML Cookbook” and make the model smaller

Project info

Difficulty: Easy

Platforms: ArduinoRaspberry PiNeuton Tiny ML

Estimated time: 1 hour

License: GNU General Public License, version 3 or later (GPL3+)

Items used in this project

Hardware components

Arduino Nano Arduino Nano x 1
Raspberry Pi Pico Raspberry Pi Pico x 1

Software apps and online services

Neuton Tiny ML Neuton Neuton Tiny ML Neuton


Lately, I’ve been really passionate about the field of TinyML, actively researching how to enable ML-driven solutions on low-powered devices, and I came across a newly released book, “TinyML Cookbook”, written by Gian Marco Iodice, a team and tech lead in the Machine Learning Group at Arm.

To my mind, this book is the most self-explanatory guide on TinyML existing today as the author gives a comprehensive overview of the concept in general and illustrates it with a lot of cool practical cases, so-called “recipes”. I took one of such recipes and decided to repeat the experiment of building an 8-bit model for predicting the probability of snow.

For more interest, I decided to build my model on another platform instead of the one suggested by the author (he implemented the case using TensorFlow Lite). I opted for a free-to-use platform, Neuton TinyML, in order to compare metrics of the resultant models which had to be deployable on memory-constrained MCUs (the author conducted the experiment on an Arduino Nano and a Raspberry Pi Pico).

Frankly speaking, I got quite exciting outcomes. Keep reading to learn the details :)

Original Process

The original process is described in Chapter 3 of the “TinyML Cookbook” where the author gives a detailed explanation of all the development stages of a TF-based application for an MCU, including:

  • Import of weather data from WorldWeatherOnline
  • Dataset preparation
  • Model training with TF
  • Model quantization with a TFLite converter
  • Using the built-in temperature and humidity sensor on an Arduino Nano
  • Using the DHT22 sensor with a Raspberry Pi Pico
  • Preparing the input features for the model inference
  • On-device inference with TFLu

For clarity, the process can be represented as such a scheme:

The author also provided a useful link so that everyone can easily get the source code:

Alternative Way

The example that the author gives in his book is indeed a good working case, especially since everything is described in the book to the smallest detail, and links to all the necessary resources are given.

However, I thought about how to improve the proposed workflow and reduce the number of steps by eliminating the need for quantization. Here’s the workflow that I created with Neuton TinyML:

Step-by-step Workflow

The main aim of my experiment was precisely the creation of a model to check the metrics. My workflow on the Neuton TinyML platform can be described in the following steps:

  • Upload a new solution and uploaded a training dataset.
  • Upload a validation dataset.
  • Select a target variable “Target”.
  • Choose the target metric “Accuracy”, enable the TinyML mode, and select 8-bit depth.
  • Start model training.

Here are the metrics of the resultant model:

the metrics of the resultant model.

To my mind, the most noteworthy outcome that I got is that the model turned out to be super compact - 0.4 Kb without any additional compression or quantization, and the small size didn’t affect the accuracy at all (which is 88%).

If we compare the models created using the approach of the author of the book and my approach, we get the following results:

Models results.

Thus, I can conclude that when using the Neuton TinyML platform, I was able to speed up the process of creating a model, as well as get better results in terms of size without compromising accuracy.

In fact, the book, “TinyML Cookbook” also describes other interesting cases, such as voice recognition, gesture-based interface building, and indoor scene classification, among others. Thank you, Gian Marco Iodice, for writing a cool book that inspires people to conduct experiments in the TinyML field.


Photo of alex-miller


Director of Data Science and Engineering at


Leave your feedback...